

Year 12 Mathematics Extension 2 2013 HSC ASSESSMENT TASK 1

Term	4	W	eek	8	201	1
1 CI III		- V V	CCN	()	401	ιZ

Name:			
Teacher:_	 	 	

Monday 26th November Periods 5 & 6

Set by: VUL

- Attempt **all** questions.
- All questions are of equal value.
- Marks may be deducted for insufficient, or illegible work.
- Only Board approved calculators (excluding graphic calculators) may be used
- Total possible mark is **50**
- Begin each question on a new page.
- **TIME ALLOWED :** 90 minutes + 2 minutes reading time.

Ques	stion 1		Marks
(a)	Let z	$z = 2\sqrt{3} + i$ and $w = \sqrt{3} - i$	
	(i)	Find $2z - \overline{w}$ in the form $x + iy$ where x and y are real.	1
	(ii)	Find $\frac{z}{w}$ in the form $x + iy$ where x and y are real	2
(b)		the two square roots of $3-4i$ for z giving your answers in the form $x+iy$ who y are real.	ere
(c)	(i)	Express $-1-\sqrt{3}i$ in modulus-argument form.	2
	(ii)	Hence evaluate $\left(-1-\sqrt{3}i\right)^9$	2
(d)	On so	eparate Argand diagrams, sketch the locus of points z such that:	
	(i)	$\arg\left(z-1+i\right) = \frac{\pi}{2}$	2
	(ii)	the inequalities $ z-i \le 2$ and $1 \le \text{Im}(z) \le 2$ both hold	2
	(iii)	$ z+\overline{z} =1$	2
(e)	Fine	d the three cube roots of $-8i$ in the form $x+iy$ where x and y are real.	3
Ques	tion 1 is	s continued on the next page	

2

4

2

(f) (i) By rationalising the numerator of
$$\frac{\sqrt{n+1}-\sqrt{n}}{1}$$
 prove that
$$\sqrt{n+1}-\sqrt{n} > \frac{1}{2\sqrt{n+1}}.$$

(ii) Hence prove by mathematical induction that

 $\sqrt{n} > 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ for $n \ge 7$

Question 2 Start a new page.

(a)

In the diagram the vertices of a triangle ABC are represented by the complex numbers z_1 , z_2 and z_3 , respectively. The triangle is isosceles and right-angled at B.

(i) Explain why
$$(z_1 - z_2)^2 = -(z_3 - z_2)^2$$
.

- (ii) Suppose D is the point such that ABCD is a square. Find the complex number, expressed in terms of z_1 , z_2 and z_3 , that represents D.
- (b) (i) Sketch the locus of the complex number z = x + iy where $\arg[z-1] \arg[z+1] = \frac{\pi}{4}$.
 - (ii) Find the Cartesian equation of the locus described in part (i) 1
 - (iii) Give the range of the locus found in part (ii).

Question 2 is continued on the next page.

Question 2 Continued

(c) If $z = \cos \theta + i \sin \theta$:

(i) Show that
$$z^n - \frac{1}{z^n} = 2i\sin n\theta$$

- (ii) Use the binomial theorem to expand $\left(z \frac{1}{z}\right)^5$
- (iii) Hence express $\sin^5 \theta$ in terms of $\sin n\theta$
- (d) If ω is a complex root of $z^5 1 = 0$ with least positive argument, show that ω^2 , ω^3 , ω^4 are the other complex roots.

(ii) Show that
$$1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$$

2

1

- (iii) Plot all the roots of $z^5 1 = 0$ on an argand diagram.
- (iv) Express $z^4 + z^3 + z^2 + z + 1$ as a product of two quadratic factors. 3

(v) Prove that
$$\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}$$

The diagram shows points O, R, S, T, and U in the complex plane. These points correspond to the complex numbers 0, r, s, t, and u respectively. The triangles ORS and OTU are equilateral. Let $\omega = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$.

- (i) Explain why $u = \omega t$.
- (ii) Find the complex number r in terms of s.
- Using complex numbers, show that the lengths of RT and SU are equal.

End of Assessment Task

$ -1 - \sqrt{3} = 2 \cos \left(-\frac{2\pi}{2}\right)$ $ -1 - \sqrt{3} = \left[2 \cos \left(-\frac{2\pi}{2}\right)\right]^{\frac{3}{2}}$ $= 2^{\frac{3}{2}} \cos \left(-6\pi\right)$ $= 2^{\frac{3}{2}} \cos 511$	() i) (§ /2	2-if and -2+ is (one for	$x = \pm 2 y = \pm 1$ $\therefore \text{ Square roots an}$	x-42=2 x41=3-41	p) /ct (x+cm) = 3-4:	(a) i) 22-21 = 315+1 (b) 12 = 215+1 / 15+1	Question !	Suggested Solution (s)
(((each read		Las		< <	,	Comments
x=x	→ ×	111) /2+2/=1	-1 X X 25h	ξ	1) 12-1 (52 2) 1545	→	di) 07(=-(1-1))=#	Suggested Solution (s)
			20 m	circle	et (1-1)	م أبدا سما		Comments

2013 Year 12 Mathematics Extension 2 Task 1 SOLUTIONS

	Question (onthoused e) Aut -8i = 8iis(-#) $ \frac{2^{3}}{2} = 8 cis(-#) - # $ $ \frac{2^{3}}{2} = 8 cis(-#) - # $ $ \frac{2^{3}}{2} = 2 cis(-#) + 2kn $ $ \frac{2^{3}}{2} = 2 cis(-#) + 3 - i $ $ \frac{2^{3}}{2} = 2 cis(-#) = -3 - i $ $ \frac{2^{3}}{3} = 2 cis(-#) = -3 - i $ $ \frac{2^{3}}{3} = 2 cis(-#) = -3 - i $ $ \frac{2^{3}}{3} = 2 cis(-#) = -3 - i $ $ \frac{2^{3}}{3} = 2 cis(-#) = -3 - i $ $ \frac{2^{3}}{3} = 2 cis(-#) = -3 - i $ $ \frac{2^{3}}{3} = 2 cis(-#) = -3 - i $ $ \frac{2^{3}}{3} = 2 cis(-#) = -3 - i $ $ \frac{2^{3}}{3} = 2 cis(-#) = -3 - i $ $ \frac{2^{3}}{3} = 2 cis(-#) = -3 - i $ $ \frac{2^{3}}{3} = 2 cis(-#) = 2$	Suggested Solution (s)
	((start))	Comments
then proved towe for makely. Since towe to makely. Then to makely 10.	ii) When m=7 This - (1+\frac{1}{2}+	Suggested Solution (s)
, k .		Comments

= - to A 25-1=0	<u></u>	(iii) 0< M < 1 + 15
T Sum of roots	. <	ii) $\xi^2 + (y-i)^2 = 2$
′		
2 - 47 = 0,2 17 = (0.4 2 - 0,2 17 = W	\	147
apart on the with the starte	ecument.	b) i) alternative solutions of end of a
di) The most of a	•	as Bc = AD opp. sides
32 i sin 8 = 2 i sin 5		= 0A + AD = 0A + AD
(2isia 8) = = = = = = = (= = =) + 10 (=-=)		86 "7-7-7
11) ch m=1.		(2, -2) = -(2, -2)
i) (z-±)5	<u></u>	of the squarity
Zin wand - carme	•	(a) i) BA = 1, BE
() = m = cosao + isinme		Question 2
Suggested Solution (s)	Comments	Suggested Solution (s)
hair 17 기의 하 : 보세 : 사 시 사 : 1 중 [Suggested Solution (s) Comments Ci) $\frac{2m}{2} = casm \theta + icinm \theta$ ii) $(\frac{2m}{2} - \frac{1}{2})^{\frac{2m}{2}}$ $\frac{2cinm \theta}{2cinm \theta} = \frac{2cinm \theta}{2cinm \theta} + \frac{2cinm \theta}{2cinm \theta} + 10(\frac{1}{2})$ $\frac{2cinm \theta}{2cinm \theta} = \frac{2cinm \theta}{2cinm \theta} + \frac{2cinm \theta}{2cinm \theta} + 10(\frac{1}{2})$ $\frac{2cinm \theta}{2cinm \theta} = \frac{2cinm \theta}{2cinm \theta} + \frac{2cinm \theta}{2cinm \theta} + 10(\frac{1}{2})$ $\frac{2cinm \theta}{2cinm \theta} = \frac{2cinm \theta}{2cinm \theta} + \frac{2cinm \theta}{2cinm \theta} + 10(\frac{1}{2})$ $\frac{2cinm \theta}{2cinm \theta} = \frac{2cinm \theta}{2cinm \theta} + \frac{2cinm \theta}{2cinm \theta} + 10(\frac{1}{2})$ $\frac{2cinm \theta}{2cinm \theta} = \frac{2cinm \theta}{2cinm \theta} + \frac{2cinm \theta}{2cinm \theta} + 10(\frac{1}{2})$ $\frac{2cinm \theta}{2cinm \theta} = \frac{2cinm \theta}{2cinm \theta} + \frac{2cinm \theta}{2cinm \theta} + 10(\frac{1}{2})$ $\frac{2cinm \theta}{2cinm \theta} = \frac{2cinm \theta}{2cinm \theta} + \frac{2cinm \theta}{2cinm \theta} + 10(\frac{1}{2})$ $\frac{2cinm \theta}{2cinm \theta} = \frac{2cinm \theta}{2cinm \theta} + \frac{2cinm \theta}{2cinm \theta} + 10(\frac{1}{2})$ $\frac{2cinm \theta}{2cinm \theta} = \frac{2cinm \theta}{2cinm \theta} + \frac{2cinm \theta}{2cinm \theta} + 10(\frac{1}{2})$ $\frac{2cinm \theta}{2cinm \theta} = \frac{2cinm \theta}{2cinm \theta} + \frac{2cinm \theta}{2cinm \theta} + 10(\frac{1}{2})$ $\frac{2cinm \theta}{2cinm \theta} = \frac{2cinm \theta}{2cinm \theta} + \frac{2cinm \theta}{2cinm \theta} + \frac{2cinm \theta}{2cinm \theta} + 10(\frac{1}{2})$ $\frac{2cinm \theta}{2cinm \theta} = \frac{2cinm \theta}{2cinm \theta} + 2cinm $	3

2013 Year 12 Mathematics Extension 2 Task I SOLUTIONS

	= (2-100325+1)(2-100325+1) = (2-100325+1 = (2-1)(2+2+2+1 = (2-1)(2+2+2+2+1)	$= (z-\mu)(z-u^{2})(z-u^{2})(z-u^{2})(z-u^{2})(z-u^{2})$ $= (z-\mu)(z-\mu)(z-u^{2})(z-u^{2})(z-u^{2})(z-u^{2})(z-u^{2})$ $= (z-\mu)(z-\mu)(z-\mu)(z-\mu)(z-\mu)(z-\mu)(z-\mu)(z-\mu)$	A) S C MA C MA C MA C C M	Suggested Solution (s) Com
in) similarly OR = 05 x cb(-1) (ank clothering T = 15 sis (-1) targs) T = 15 sis (-1) targs	c);) Since Drow is equilatoral LTOW = II Now o'v = ot x cis I (dad with a f II) M = but robation of II)	$ \frac{(1)^{2}}{(1+u)^{2}} = \frac{1}{(1+u)^{2}} + \frac{1}{(1+u)^{2}} + \frac{1}{(1+u)^{2}} + \frac{1}{(1+u)^{2}} + \frac{1}{(1+u)^{2}} + \frac{1}{(1+u)^{2}} = \frac{1}{(1+u)^{2}} + \frac{1}{(1+u)^{2}} + \frac{1}{(1+u)^{2}} = \frac{1}{(1+u)^{2}} + \frac{1}{(1+u)^{2}} = \frac{1}{(1+u)^{2}} + \frac{1}{(1+u)^{2}} = 1$	v) is and where roads of zi-zwiznz + 1 ory where b = zwizz 0 similary where d = zwizz 0 similary where and where or similary = -b = zwizz + 1 ory in whi = -b = zwizz 0	Comments Suggested Solution (s) Comments

Supregred Solution (s)	Comments	Suggested Solution (s)	Comments
Overshim 2 Continued			
in) Since su = u-s}	<u> </u>		
1 x dt = 2 x x y x y x y x y x x x x x x x x x x	<u> </u>		
Now / 12x RT = /m-s/			
:./w/x/et/ = /u-s/	\		
$\frac{1}{ x e\tau } = \frac{1}{ x-s }$	~		
= 1501			
* See attached document for alternate solutions			

ALTERNATIVE Solutions $\frac{1}{4}$ Question 2 (a) (ii) Let $D(z_4)$. Vertical $\frac{1}{2}$ $CD = -i cB$ $Z_4 - Z_3 = -i (z_2 - Z_3)$ $Z_4 = Z_3 + i (Z_3 - Z_2)$ $Z_4 = (1+i)Z_3 - iZ_2$. Vertical $\frac{2}{6D} = BC + BA $ $= (z_1 - Z_2) + (z_1 - Z_2)$ $= (z_1 - Z_2) + (z_2 - Z_2)$ $= (z_1 - z_2) + (z_1 - z_2)$ $= (z_1 - z_2) + (z_1 - z_2)$ $= (z_1 - z_2) + (z_1 - z_2)$ $= (z_1 - z_2) + (z_2 - z_2$	Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
	Question 2 (a) (ii) Let $D(Z_4)$. VELSION 1 $\vec{CD} = -i \vec{CB}$ $Z_4 - Z_3 = -i (Z_2 - Z_3)$ $Z_4 = Z_3 + i (Z_3 - Z_2)$ $Z_4 = (1+i)Z_3 - iZ_2$. VELSION 2 $\vec{BD} = \vec{BC} + \vec{BA}$ (parallelant vectors $= (Z_3 - Z_2) + (Z_1 - Z_2)$ i.e. $\vec{BD} = \vec{CD} - \vec{CD}$ So $Z_4 - Z_2 = Z_1 + Z_3 - 2Z_2$ $\vec{AND} \vec{BD} = \vec{OD} - \vec{OB}$ So $Z_4 - Z_2 = Z_1 + Z_3 - 2Z_2$ $\vec{AD} = i \vec{AB}$ $\vec{AD} = i \vec{AB}$ $\vec{AD} = i \vec{AB}$ $\vec{AD} = i \vec{AB}$ $\vec{AD} = i \vec{AB}$ $\vec{CZ}_1 - \vec{CZ}_2 - \vec{CZ}_1$ i.e. $\vec{CZ}_1 - \vec{CZ}_1 - \vec{CZ}_1$ $\vec{CZ}_1 - \vec{CZ}_2 - \vec{CZ}_1$		$ \frac{1}{0D} = \frac{1}{BC} \times \sqrt{2} \times ais \frac{\pi}{4} $ $ \frac{1}{A} = \frac{1}{A} \cdot ais \frac{\pi}{4} $ $ \frac{1}{A} \cdot ai$	factor 1-1/2 1-2, -(i) 1-2, -(ii) 1-2, -(ii)